Skip to content

Category: news

Unirac announces UL 3741 listings for NXT Umount and SolarMount

Nailed it.

Looks like for residential, we’re still stuck with Tesla as the inverter solution. Hoping we get some other manufacturers in the mix, soon.

I imagine I may have been the subject of some colorful language today. 😅 I don’t see any manuals up yet, so I’d guess we’ll see them tomorrow or later in the week. I’ll get all the details posted on UL3741.com as soon as I get those in my sunny li’l hands.

Unirac is NXT to Residential UL 3741

Intertek has posted the updated Photovoltaic Hazard Control listings for Unirac on their directory, and it includes a few new racking models.

Included in the listing are existing racking models, which are exclusive to flat roof solutions, but newly added to the list are NXT Umount and SolarMount, with callouts for both residential and commercial.

The full list of new addendums:

  • UL 3741 PV Hazard Control Installation Addendum for NXT Umount Residential Roof Applications PUB2024MAY07
  • UL 3741 PV Hazard Control Installation Addendum for NXT Umount Commercial Roof Applications PUB2024APR26
  • UL 3741 PV Hazard Control Installation Addendum for SolarMount Residential Roof Applications PUB2024MAY07
  • UL 3741 PV Hazard Control Installation Addendum for SolarMount Commercial Roof Applications PUB2024APR26

We don’t know yet what inverters will be listed with these racking systems, or exactly what installation will look like, but it’s safe to assume that we can expect something similar to Ironridge and Chiko’s listings.

Chiko is the only company so far to have listings for a sloped-roof racking that includes commercial inverters, but it sounds like Unirac will be next to the party. This will be immensely helpful for solutions like agriculture, where there’s often large, accessible, sloped roofs that could accommodate roof-mounted inverters.

This is as yet unannounced by Unirac, so the cited documentation in the listing is not available publicly. I imagine we’ll see more details in the coming weeks. Update: Unirac has now officially announced these listings.

If you want to know the details of the yet-to-be-released documents once they’re available, make sure to subscribe to the newsletter at UL3741.com. While you’re there, you can explore all current UL 3741 listings, cross-referenced with compatible inverters and array-level rapid-shutdown systems.

Crystalline Solar is Forever

Editors note: When initially publishing this, I was unaware that the sample size for the study in France was pretty small and there may be some notable omissions from the PV Mag article. Keep your brain in gear, dear reader.

Perovskites punching air rn.

From GwĂŠnaĂŤlle Deboutte at PV Magazine:

New testing conducted at France’s oldest PV system have shown that its solar modules can still provide performance values in line with what the manufacturers promised.

The testing showed that the modules still produce on average 79.5% of their initial power after 31 years of operation. In a previous testing carried out 11 years ago, the panels were found to produce 91.7% of their initial power.

An average of 0.66% degradation every year over the course of 30 years of use is incredible, even though it’s clear that the third decade brings more degradation than the first two. The fact that solar panels I installed 10 years ago will still have significant usefulness in 20 years is amazing.

It IS likely that most solar panels won’t be given the option to last for 30+ years in their original place of installation. Investors are usually gonna scrap the slower-replicating money in chase of the faster-replicating money, as technology advances. However, I wonder if we’ll see an increase in selling these older panels to countries that aren’t as desperate to get the latest solar tech. After all, the best alternative to recycling is reuse.

I’ve been convinced that perovskites, what we’re all looking toward as the proverbial future rocket fuel in this industry, could never dream for this kind of reliability. Reliability has long been the kryptonite of this technology. It’s a problem that we keep hearing is on the verge of a solution, as this study from Rice University claims:

A Rice University study featured on the cover of Science describes a way to synthesize formamidinium lead iodide (FAPbI3)—the type of crystal currently used to make the highest-efficiency perovskite solar cells—into ultrastable, high-quality photovoltaic films. The overall efficiency of the resulting FAPbI3solar cells decreased by less than 3% over more than 1,000 hours of operation at temperatures of 85 degrees Celsius (185 Fahrenheit).

“Right now, we think that this is state of the art in terms of stability,” said Rice engineer Aditya Mohite, whose lab has achieved progressive improvements in the perovskites’ durability and performance over the past several years. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”

This is, let me be clear, WAY better than anything we’ve seen so far. I don’t know how comparable 1,000 hrs of operation at 85°C is to one year in an Arizona desert, but that’s way more successful than anyone else has been so far. Just this February, advancements were being trumpeted about only 10% degradation after 700 hrs of operation. But given that there’s about 8,000 hrs of sunlight a year (depending on a number of factors, obviously), perovskites are going to have a hard time reaching that <1%-degradation-per-year threshold.

However, some companies are already convinced they’ve fixed the degradation issue and that perovskites are ready for prime time, as Marian Willuhn writes in PV Magazine:

Utmo Light, a Chinese perovskite company, is showcasing its first commercial perovskite solar module this week at the SNEC PV trade show in Shanghai. The Module UL-M12-G1 measures 1,200 mm x 600 mm and is available in four power classes, ranging from 110 W to 130 W.

Utmo Light President Zhenrui Yu told pv magazine at SNEC in Shanghai that the first target for the new perovskite modules will be building-integrated PV (BIPV) applications.

Yu said the panels have passed all IEC testing for solar modules and can withstand a 2,300-hour UV bath at 1,000 watts per square meter and 60 C, for 12 years of operation without degradation.

These panels are 1200m x 600mm, with a max of 130w, with a cost of around $.19 per watt (not accounting for whatever tariffs may or may not apply). That IS better than the cost of roughly $.30 per watt for a crystalline panel. But the max efficiency you can get from these perovskites at this stage of production is about 18.06% (180.6 w/m² at 1000 w/m² of irradiance).

To take a random contrasting example, Axitec’s 550w monocrystalline panel (AC-550MBT/144V) is 2278mm x 1134mm, making a total efficiency of about 21.29% (212.9 w/m² at 1000 w/m² of irradiance).

So comparatively, this commercial perovskite panel from Utmo is extremely meh as an introductory product, given its lackluster efficiency. Despite a (maybe?) better price, it can’t currently touch crystalline silicon in production.

This does make sense, though. As the Rice University article mentions, the higher efficiency perovskites are the most unstable, so Utmo has probably solved for 2D perovskites (most stable, least efficient) and plans to build up from there. 3D perovskites, which contain the power-density we all dream of, still have a ways to go before they hit the market.

There’s a part of me that is hopelessly skeptical of how much time and effort it has taken to get this technology to market. How is it possible that this can EVER be stable, when it feels like all the resources of the planet can’t get us to where we want to be, after decades of research?

Yet at the same time, I didn’t have a front row seat to the development of the ever-lasting crystalline tech that our industry now depends upon. I didn’t have the chance to watch research develop, or companies hype unfinished technology, so it’s easy to take for granted the struggles of the past while I criticize the struggles of today.

I will continue to be skeptical, but perhaps…crystalline solar may not be forever.

Shining a Light on Lumio

From Eric Peterson at Utah Investigative Journalism Project:

McDole has hired a lawyer and is still battling the company over her claim of roof damage and for giving her what she said is false information about tax rebates being able to offset a third of the $40,000 loan she had to take out.

When McDole heard about Lumio’s tax incentive, she was astounded.

“Where’s my fucking tax break?” she asked.

Sigh. Another day, another large solar company accused of defrauding their customers. The entire article’s very good, go read it and then come back.

I keep getting Pink Energy vibes, here. For better or worse, I’ve been obsessed with the Powerhome Solar/Pink Energy story recently, along with diving into the CEO’s claims and actions over the course of the last several years. Pink Energy, of course, went bankrupt in 2022, after years of customer complaints— similar to those being brought to Lumio. Of course, Pink Energy’s death was brought much more swiftly due to issues with Generac’s solar product at the time, but I tend to think Pink Energy wasn’t going to last, anyway. I’ve seen enough reports of bad training and mismanagement at the lower levels that is really hard to fix, especially when the CEO bragged in his own book about firing 20% of Powerhome staff, every time the performance numbers weren’t where they needed to be1.

Solar is complex. Honestly, more complex than it often needs to be, mostly due to regulatory shit. Changing codes, especially when you’re a company that’s multi-state, can be a nightmare for training designers and installers. And I don’t know for sure what Lumio’s business model is, either, because there’s a ton of conflicting information about whether Lumio’s installer’s are all in-house or if they use a number of contractors (I dare you to try deriving any conclusion from this Reddit thread, for example). Regardless, they started by buying or merging with a number of solar companies. Especially in that situation, quality and customer care becomes a super difficult thing to manage and maintain under the expectation of immediate growth, a problem with most investor-backed companies.

Growth at all costs is extremely costly. And in this industry, growth at all costs for a solar company usually ends up being more costly for the customer. Large solar companies are often able to hide behind well-paid lawyers, flashy marketing, and tedious games of phone tag, where the solar company never tags back.

And again, we come back to the question: Will solar ever get to a place where we’re not identified largely as scammers, and if so, what are the market forces that will finally make it happen? Do we need yet more regulation, this time in sales contracts? Do we need “Nutrition Facts” labels for solar contracts, explaining in consistent terms how if you don’t have the tax liability to get your 30% credit, you’re gonna suddenly be paying way higher monthly bills for the next 20 years? Do we need some faster, state-enforced means of forcing lazy solar installers to come back and fix their fucked installations? Or is this simply an inevitable by-product of the opportunity presented by federal tax credits and grants, seized by salesmen and CEOs with dollar signs in their eyes?

Just stop screwing up my industry, geeeeeez

  1. Own Your Power by Jayson Waller, p138 ↩︎

“Racing” Toward Perovskites – TL;DR

From CleanTechnica:

In a new paper published February 26 in the journal Nature Energy, a CU Boulder researcher and his international collaborators unveiled an innovative method to manufacture the new solar cells, known as perovskite cells, an achievement critical for the commercialization of what many consider the next generation of solar technology.

Here’s the TL;DR – No, perovskites are not dramatically closer to being commercially viable. They found they could reduce oxidation in open air (which is what kills the performance of perovskites over time) by mixing dimethylammonium formate with the perovskite solution before it’s sprayed onto the panel. This allows for retained performance of 90% after 700 hours, up from 300 hours. As the article notes, there are over 8000 hrs in a year.

Still have a ways to go.

Tesla Roof comparisons by Matt Ferrell

Absolutely fantastic video from Matt Ferrell here. He does a pretty fair apples-to-apples comparison between his more typical solar setup and Paul Braren from TinkerTry.com‘s Tesla solar roof installation. Where I often see very abstract cost comparisons to Tesla’s solar roof, this takes a look at the costs and benefits in a ton of different ways. Both systems are definitely higher in cost than your typical solar install, but the comparisons are fair and useful! Loved this.

Fiberglass PV Frames?!

From pv magazine:

“This composite material is used in applications such as wind turbine blades, to withstand wind pressure, vibration and centrifugal force, as well as railway tracks, to withstand the pressure and vibration of passing trains,” a spokesperson from the company told pv magazine. â€œFiberglass-reinforced composite materials have been used for over 20 years in outdoor environments and fields with higher load requirements, with countless successful application cases.”

Fiberglass-reinforced composite for panel frames is fascinating on a number of levels.

  • Panel frame wouldn’t need grounded, which is a very weird thing to think about.
  • Would it make the panel heavier or lighter than aluminum frames? Presumably heavier.
  • Not having to deal with any leakage to ground through the panel frame in 20 years might actually lead to better longevity.
  • Then again, I don’t know how fiberglass-reinforced composite will fare after 30-40 years in direct sun. We know the silicon lasts forever if it’s treated well, but will the composite match aluminum’s durability?
  • This would be worse for recycling

What do you think?

Solar Adoption in Rural America

From Mike De Socio at CNET:

“We were able to find that adoption of these technologies is highly related to income,” Mayfield said. “We also find that education is also a main factor of these technologies.” In other words, rural Americans with higher incomes and more education are more likely to put solar panels on their roof or buy a heat pump.

I mean, yep.

And the big “solution” many companies turn to for low-income and low-education folks, is leasing. I’ve met maybe a handful of people who were a big fan of their lease, but they were markedly at the beginning of the craze in the early 2010s when the deals were much better. However, most leaseholders I’ve encountered, especially in recent times, have become cynical about solar, mainly due to poor service.

Solar leasing companies historically have very few service people available, and it often takes months of hassle to get people to come out. The usual scenario involves residents reaching out to the leasing company for months without a response or with dismissive gestures. As a last resort, the resident stops paying the monthly bill, finally grabbing the attention of the company. However, instead of getting someone to fix the system, the company contacts someone like me to disable the system outright until payment continues.

Every single one of those kinds of jobs I’ve seen are on low-income housing. When these leasing companies mess up, it reinforces the belief that solar is a scam. Paired with fast-talking salesmen with no morals, leasing is the fastest way to introduce solar to low-income Americans — and a recipe for alienation.

Best way to educate, as with anything you want to incentivize, is to increase the accessibility of ownership.

Solar, but in space!!!

From Corey S. Powell at WSJ:

In this age of wireless everything, engineers are trying to perform the ultimate act of cord-cutting: generating abundant solar electricity in space and beaming it to the ground, no power cables required.

The idea and how it works is basically putting a huge solar array in space, and beaming it the power via microwave like a huge wireless charger, which is genuinely cool. But it’s not like we’d suddenly be getting rid of large power farms on earth:

Bringing space-based solar power to the masses will require not just a lot of satellites but also a lot of antenna farms on the ground. Two gigawatts of beamed power would require about 25 square miles of receiver, according to a Solaris-funded report by the research firm Roland Berger.

Doing some googling, 2 GW of solar farm would likely also require close to 25 square miles of land use, but you’d get less interruption due to weather since microwaves don’t give a fuck about clouds. And I’m sure a lot of this tech will continue to miniaturize over time.

Regardless, this kind of tech development excites me, even though it’s still in early stages.